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EFFECTS O F  J E T  EXHAUST GAS PROPERTIES ON EXHAUST 

SIMULATION AND AFTERBODY DRAG* 

William B. Compton III 
Langley Research Center 

SUMMARY 

Afterbody drag predictions fo r  jet airplanes are usually made experimentally with the 
jet exhaust flow simulated. The physical gas  properties of the fluid used for  the model jet 
exhaust can affect the accuracy of simulation of the airplane's jet exhaust plume. The 
effect of the accuracy of jet plume simulation on afterbody drag was investigated by making 
wind-tunnel tes t s  on a single engine nacelle model. In addition to unheated air as the 
exhaust gas, the decomposition products of three different concentrations of hydrogen per-  
oxide were utilized. 

The air jet simulation consistently resulted in higher boattail drag than the hydrogen 
peroxide simulation. The largest  differences in  drag due to exhaust gas  properties were 
obtained for  the combination of high transonic Mach numbers and steep boattail angles. 
For these conditions, the current  data indicate that the use  of air to simulate a nonafter- 
burning turbojet exhaust can result  in  an overprediction of afterbody drag as high as 
17 percent of the real nonafterburning turbojet exhaust value. 

The differences between the drags obtained for  the various exhaust gases  axe attrib- 
uted to different plume shapes and entrainment properties of the gases. 
t he  plume shape differences can be made by relating the drag to the computed initial incli- 
nation angle of the jet plume. Although the entrainment differences are difficult to  predict, 
they seem to be nearly a l inear function of the product of the jet exhaust gas constant and 
local  temperature, the local jet exhaust kinetic energy per  unit mass ,  and the internal 
energy per  unit mass.  

Corrections fo r  

INTRODUCTION 

Experience has  shown that the complex flow field in  the vicinity of a je t  airplane's 
exhaust nozzles has  made calculation of transonic nozzle drag difficult. 
fo r  example.) The jet exhaust, which influences nozzle drag by plume blockage and 

(See refs. 1 and 2, 

- - --- - _ - ~  ~ - - . 
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entrainment, is a major  factor contributing to  the complexity of the flow and hence the dif- 
ficulty in calculating the drag. Therefore, transonic performance predictions a r e  made 
experimentally with the exhaust flow simulated. Usually because of technical reasons,  
costs,  or safety considerations, the fluid simulating the je t  exhaust of the wind-tunnel 
model is not the same as the exhaust gas  of the full-scale airplane. Thus, the difference 
in the temperatures, specific heats, and gas  constants,between the model and airplane 
exhausts can resul t  in a difference in je t  plume shapes and entrainments. The problem, 
therefore, is to determine if the magnitude of the je t  interference on afterbody drag is the 
same for different je t  exhaust gases: and if  not, to find a logical way to adjust for the 
differences. 

Early investigations' which have been conducted to  determine the effect of varying 
the  exhaust gas  parameters  on jet interference (refs. 3 to 8) generally utilized afterbody 
configurations which a r e  not typical of airplanes today. 
tion such as jet exit profiles, afterbody skin temperatures, and boundary-layer profiles 
which precluded determining precise  differences in  drag due solely to the jet  interference 
of the various exhaust gases. However, the investigations did tend to show that with cold 
air simulating the jet  exhaust, base and boattail p ressures  were generally lower than for  
the other gases. In reference 9, attention was especially given to the problem of corre-  
lating the jet interference for different exhaust gases. In that reference, several  jet 
simulation parameters  were proposed which, if  matched for different jet exhausts, would 
hopefully give the same jet interference for each exhaust gas. 

Usually, they lacked informa- 

The present investigation was conducted to get a clear  understanding of the relative 
magnitude of jet interference for  various exhaust gases.  It also was conducted to deter-  
mine at which conditions any differences between the jet  interference of the various gases  
occur, the cause of the differences, and to evaluate the simulation parameters  suggested in 
reference 9. This particular investigation concentrated on studying the problem of jet  
interference on surfaces forward of the nozzle exit. Therefore, only those correlation 
parameters  which were considered most likely to influence the jet interference in this 
region were evaluated. 

Two afterbodies, one with a boattail angle of 20' and one uiith an angle of loo, were 
investigated. Each w a s  investigated for je t  exit Mach numbers of 1 and 2. Air and the 
decomposition products of three concentrations of hydrogen peroxide were used for the jet 
exhaust. Afterbody pressures  and skin temperatures,  jet exit p ressure  and temperature 
profiles, and afterbody boundary-layer profiles were measured. 

SYMBOLS 

A area,  meters  squared 

Amax maximum cross-sectional a r ea  of model, meters  squared 

2 



a 

B 

C entrainment const ant 

speed of sound, meters  p e r  second 

jet total temperature weighting factor 

uncorrected afterbody pressure-drag coefficient 

corrected afterbody pressure-drag coefficient (see eq. (1)) 

afterbody pressure-drag coefficient at jet-off conditions 

afterbody pressure-drag coefficient at jet-on conditions 

cD 

‘D,aft 

‘D,jet off 

‘D,jet on 

CP 

CV 

d 

dmax 

F 

f 

H 

i ,n 

I 

M 

ment 

NRe 

P 

P - P, 

qc-3 
pressure  coefficient, - 

specific heat at constant volume, joules per  kilogram-kelvin 

diameter,  meters  

maximum diameter of model, meters  

jet total p ressure  weighting factor 

distance from nozzle throat to exit (see fig. 4), meters  

momentum, kilogram-meters pe r  second 

integers 

length of afterbody, meters  

Mach number 

m a s s  of fluid entrained, kilograms 

Reynolds number 

pressure ,  newtons pe r  meter  squared 
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qod 

R 

r 

re 

S 

T 

TdP 

V 

W 

X 

4 
PCQ 

Y 

f ree-s t ream dynamic pressure,  newtons pe r  meter  squared 

gas  constant, joules per  kilogram-kelvin 

radial  distance from model center line, meters  

radius of nozzle exit, meters  

length of convergent portion of nozzle (see fig. 4), meters  

temperature,  kelvin 

free-s t ream dewpoint temperature,  kelvin 

velocity, meters  per  second 

speed of jet exhaust at jet exit, meters  per  second 

local speed of jet exhaust, meters  per  second 

speed of free s t ream,  meters  pe r  second 

axial distance from nozzle exit, positive aft, meters  

axial distance from tangent point of afterbody radius to forward section of 
model, positive aft (see fig. 4), meters  

radial distance from model surface, meters  

axial distance from nozzle throat, positive aft (see fig. 4), meters  

afterbody boattail angle, angle between axis of symmetry and generatrix of 
model afterbody (see fig. 4), degrees 

1 /2  
= (Mm2 - 1) 

ratio of specific heats 

4 



calculated initial inclination angle of the jet exhaust plume, degrees 9 
e angle the boundary-layer rake probes make with axis of symmetry of model 

(see fig. 7), degrees 

Av difference between Prandtl-Meyer turning angles of the jet exhaust just inside 
the nozzle exit and just downstream of the nozzle exit, degrees 

P density, kilograms per  meter  cubed 

@ angular location measured in  a plane perpendicular to axis of symmetry of 
model, clockwise direction positive when viewed from rear, 0' a t  top of 
model, degrees 

Subscripts : 

aft 

b 

bl 

des  

e 

edge 

j 

2 

noz 

r 

S 

t 

after body 

base 

boundary layer 

design 

exit 

conditions at the outside edge of the boundary layer 

jet 

local conditions just downstream of the jet exit 

internal nozzle wall 

rake 

stat ic  

total 
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t e  

th 

00 

Gas 

1 
2 
3 
4 

trailing edge 

Composition 
I -  

Air 
64.6% steam, 35.4% oxygen 
61.5% steam, 38.5% oxygen 
57.7% steam, 42.3% oxygen 

-. 

nozzle throat 

287.04 
389.86 
383.78 
376.19 

free s t ream 

. .  

300 
646 
810 

1013 
~- ~- 

EXPERTMENTAL APPARATUS AND PROCEDURE 

Test  Matrix and General Procedure 

The jet interference on afterbody drag was investigated usjng four different jet 
exhaust gases  for each of four afterbody configurations. The investigation was made on 
single nacelle models in  the Langley 16-foot transonic tunnel which is a single-return, 
continuous , atmospheric wind tunnel with an octagonal, slotted tes t  section. 
details of the tunnel are given in  reference 10. Tes ts  were conducted at free-stream Mach 
numbers from 0.60 to 1.20, at an angle of attack of Oo, and at Reynolds numbers per  meter  
ranging from 10.06 X lo6 to 14.05 X lo6  depending on the Mach number. The blockage of 
the model and support system was 0.148 percent of the tes t  section cross-sectional area. 
The jet exhaust physical gas properties a r e  shown below. 

Further 

Formed by 
decomposition of - 

-------- 
75% H202 
82% H202 
90% H202 

The tes t  matrix is shown in the following table: 

- . __ 

Number 
- .- 

1 
2 
3a and 3b 
4a and 4b 
5 (forward bound- 

6 (rear boundary 
a ry  layer) 

layer) 

Configuration 
- 

P ,  
deg 

20 
10 
20 
10 
20 

20 

P m a x  

1.0 
1.5 
1.0 
1.5 
1.0 

1.0 

~. . 

- -~ 

Exit Mach 
number 

1 
1 
2 
2 
1 

~~ 

1 

_.  

Y 

1.4 
1.301 
1.282 
1.265 

-. 

J e t  
exhaust 
gases  

1, 2, 3, and 4 
1, 2, 3, and 4 
1, 2, 3, and 4 
1, 2, 3, and 4 

2, 3, and 4 

- 

2, 3, and 4 

Free-s t ream Mach 
number range 

0.6 to 1.2 
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The free-stream Mach number was held constant while a sweep of the jet pressure  
ratio was made with data being taken at discrete  values of pressure  ratio. All conditions 
were held essentially constant while data were being recorded. Data were taken at the 
highest Mach numbers first, and then at progressively lower Mach numbers to keep the 
variation in  the tunnel total temperature small .  
lined in appendix A. 

The data reduction procedures are out- 

Model 

General.- Two separate models were required for an air propellant system and a 
hydrogen peroxide propellant system. 
fabrication tolerance and were cylindrical nacelles with semiogive noses. The various 
afterbodies were attached to the basic models. 
to turbulent flow on the model surface was fixed 2.54 cm from the nose by a s t r ip  of 
No. 100 grit  0.25 cm wide. 
arrangement which positioned the center line of the models on the center line of the tunnel. 
(See sketch (a). All l inear dimensions are in centimeters unless otherwise noted.) Photo- 
graphs of the model installed in  the tunnel are presented as figure 1. 
general arrangement of the model in greater  detail than sketch (a). 

Both models had the same  external contours within 

Boundary-layer transition from laminar 

The models were supported from the nose by a sting-strut 

Figure 2 shows the 

Sto .  Sta. 
144.78 

dmax = 15.247 

~~ - -~ 

7 
20" 

I 0" 

5 per 
rat io 

Sta. E 

160.02 

167.64 

160.02 

167.64 

28" 

5 
*cent thickness 

.88 

Sta. Sta. Sta. 
144.78 

.62 

dma 

144~78 144.78 
I I 

Sketch (a) Model. 
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Air model.- The arrangement of the air model is shown in figure 2(a). Room tem- 
perature  air for  the jet exhaust is introduced into the model through eight sonic nozzles 
equally spaced radially around a central core. The two flow smoothing plates each have 
a latticework of sharp  edged holes drilled in an equilateral triangular pattern. 
total temperature and pressure  were obtained from a rake as illustrated. Details of the 
rake are shown in figure 3. 

The jet 

Hydrogen peroxide model.- The general arrangement of the hydrogen peroxide model 
is shown in figure 2(b). The hydrogen peroxide is decomposed by a s i lver  screen catalyst 
bed, which produces a gas composed of a mixture of steam and oxygen. The m a s s  rat io  
of the steam and oxygen, and hence the ratio of specific heats, gas  constant, and total tem- 
perature  of the mixture are determined by the concentration of the hydrogen peroxide. 

The internal section of the hydrogen peroxide model from immediately forward of 
the flow smoothing plates (see fig. 2(b)) to the nozzle contour has the same dimensions as 
the air model. Insulation was installed between the inner and outer shells of the afterbody 
to minimize heat t ransfer  and maintain the same  external skin temperatures of the air 
and hydrogen peroxide models. 

a 10' boattail, and a sonic and Mach 2 jet exit (see sketch (a) and fig. 4). The external 
contours of all the afterbodies began at  model station 144.78, and the base and exit diam- 
e t e r s  were the same for  all afterbodies. The r im  at the base was kept as small  as prac- 
tical. Two internal, inviscid, isentropic contours were designed for  the Mach 2 exits, one 
f o r  the air nozzles, and one for  the hydrogen peroxide nozzles. The method is described 
in reference 11. The internal contours at  the exit were essentially parallel to the model 
axis for all configurations. P res su re  orifices on both the external and internal contours 
were placed as close to the exit as physically practical. Tables 1 and 2 give the orifice 
locations. 

Afterbodies.- Four basic afterbodies were tested, the combinations of a 20' boattail, 

Cross-sectional area distributions of the model with the  20' afterbody and of the 
support system are given in figure 5. Examples of theoretical p ressure  distributions 
calculated by an axisymmetric curved boattail method of character is t ics  and by an  axisym- 
met r ic  potential flow method in which the body is represented by sources and sinks distrib- 
uted along i ts  surface (ref. 12) are shown in figure 6. 

Boundary-layer rakes.- _ -  The boundary layer was measured on the external surface of 
the 20° afterbody with measurements taken at  the beginning of the boattail and near the 
trailing edge. Sketches of the boundary-layer rakes and their  locations are presented in 
figure 7. The local flow angle at  the rear rake was predicted from potential flow calcula- 
tions described in reference 12. The probe tips were designed so  that accurate total 
p ressure  readings could be obtained for misalinements of the probe with the local flow up 
to angles of 10'. 

8 



In st rum ent at ion 

P res su res  were measured on the model, in the jet exhaust, and in  the boundary layer 
with individual strain-gage pressure  transducers. The accuracy of the transducers meas- 
uring the afterbody pressures  was -1293 N/m2. Temperatures were measured with swagged 
wire thermocouples. Iron-constantan swagged wire with an accuracy of *0.6 K was used 
for the air model, while the higher temperature capacity chromel-alumel swagged w i r e  
with an  accuracy of h2.2 K was used for the hydrogen peroxide model and the boundary- 
layer measurements. Wind-tunnel parameters  were measured with the standard tunnel 
instrumentation described in reference 10. 

ANALYSIS O F  EXPERIMENTAL RESULTS 

Factors Influencing J e t  Interference 

A s  the jet exhaust leaves the nozzle exit, i t  influences the afterbody pressures  in 
two ways: by presenting a body which the external flow must negotiate, plume blockage, 
and by entraining fluid.from the vicinity of the afterbody. These two effects oppose each 
other,  with the plume blockage tending to ra i se  the afterbody pressures ,  and the entrain- 
ment tending to lower them. Both these effects a r e  strong functions of the gas properties 
of the jet exhaust. The manner in which the physical properties of the exhaust gas affect 
the jet plume shape and entrainment, and hence influence the jet interference on after-  
body drag is the subject of this investigation. Sketch (b) i l lustrates plume blockage and 

Ma, 
Pa,  

Afterbody pressure 

Af terbody boundary layer 
Entra inment  

Sketch (b) Factors influencing jet interference. 
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entrainment, and includes other flow parameters  (free-stream conditions, jet  exhaust pro- 
files, and afterbody boundary layers)  which can influence the magnitude of the jet interfer-  
ence on the afterbody pressures .  

During the investigation, the jet exhaust profiles and afterbody boundary layers  were 
determined for  each exhaust gas  to insure that these flow conditions were constant. The 
variation in the free-s t ream parameters  between tunnel runs was small, and the jet  exhaust 
profiles for  each exhaust gas  were relatively flat and uniform. Also, the variation in  the 
model external skin temperatures between the exhaust gases  was generally small  except 
very near the nozzle exit. The small  skin temperature variations had no effect on the 
forward boundary layer,  and only a slight, i f  any, effect on the one at the model trailing 
edge. Therefore, any differences in  jet interference between the four exhaust gases should 
be due mainly to the effect of the properties of the exhaust gases  on plume blockage and 
entrainment. A more  thorough discussion of the additional parameters  is given in 
appendix B. 

Effect of J e t  Exhaust Physical Gas Propert ies  

on Je t  Interference 

Typical afterbody pressure  coefficient distributions at several  values of jet p ressure  
Examples of pressure-drag coefficients plotted as a func- ratio are presented in figure 8. 

tion of jet total p ressure  ratio are presented in figure 9 for  the four jet  exhaust gases.  
= 1 for each je t  There were small  differences in the jet-off drag coefficients p 

exhaust gas tested. These small  differences were mainly the resul t  of increments between 
the jet-off afterbody drag of the air model and the hydrogen peroxide model. Therefore, to 
present the differences between the jet  interference on afterbody drag of the four exhaust 
gases  accurately, the data a r e  presented as 

1 ( t,j/Pm 

‘D,jet on - ‘D,jet off 
‘D,aft = ‘D,jet off )(CD,jet off)ave + (CD,jet off)ave 

D9aft = ( ‘D, cD jet off )(‘D,jet off)ave 

where (CD,jet off)ave is the average jet-off drag  of the four gases  for  the particular after-  
body and Mach number in question. 

This afterbody pressure-drag coefficient is presented for  each afterbody in figures 10 
to 13 as a function of jet total p ressure  ratio, jet static pressure  ratio, and the computed 
initial inclination angle of the jet exhaust. Afterbody pressure  coefficient distributions are 
presented in figures 14 to 17 for  each exhaust gas at several  values of jet total p ressure  

10 
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ratio. Each jet-on pressure  coefficient is interpolated for  exact values of jet total pres-  
s u r e  ratio, but no correction was made for the jet-off level. 

Sketch (c) summarizes  the main effects of jet exhaust physical gas properties on 
afterbody drag. There are substantial differences between the afterbody pressure  drags 
for  the four exhaust gases.  Air, when used as the jet exhaust, consistently results in the 
least favorable jet interference and therefore the highest drag. The exhaust gases  having 
rat ios  of specific heats of 1.30, 1.28, and 1.26 and corresponding total temperatures of 646, 
810, and 1013 K generally resul t  in increasingly more  favorable jet interference and less 
drag. 

The magnitude of the differences between the afterbody drags for  the various exhaust 
gases  depends on the type of external flow conditions encountered. The differences 
between the afterbody drags for  the various exhaust gases  are greater  for  the high sub- 
sonic and transonic Mach numbers, M, = 0.90 and 0.95, than for  the lower Mach numbers. 
Also, the differences in drag are greater  for  the afterbody with a boattail angle of 20' than 
for  the one with an angle of loo. 
various exhaust gases  were obtained for  the combination of high transonic Mach numbers 

The greatest  differences between the drags for the 

R j t  ~ J T+, j t  K 'i kg- K 
0 1.40 287 300 

1.30 39 0 646 

0 1.28 384 810 

a 1.26 376 1013 

p = 20°, M, = 0.95 p = IO", M, = 0.80 

Jet plume boundary 
Jet plume boundary 

'D, a f t  

Jet 3 5 7 9 Jet 3 5 7 9 

o f f  Pt, j / %  o f f  Pt, j / %  

Sketch (c) Effect of exhaust gas properties on jet interference. 
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and a boattail angle of 20'. At these conditions, the strong adverse pressure  gradients 
on the afterbody are probably easily influenced by plume blockage, and the large nonjet- 
induced separated regions near the exit (figs. 14(e) and 14(g)) could be easily influenced 
by entrainment. For the combination of low subsonic Mach numbers and a boattail angle 
of loo, the differences between the drags  for the four exhaust gases  are small  until high 
jet p ressure  rat ios  are reached. (See sketch (c) and also see the pressure  distributions 
fo r  this boattail angle presented in figs. 15 and 17.) 

A dry turbojet value, determined by using the RjTj,z ratio in the method described 
in the section "Correlation of Entrainment," is shown in sketch (c) for  the high transonic 
Mach number and high boattail angle. The dry turbojet value indicates that for operating 
conditions typical of high nozzle drag (high boattail angles, and transonic speeds and cor-  
responding jet p ressure  ratios),  the use  of air to simulate a dry turbojet exhaust can result  
in an overprediction of afterbody drag by as much as 17 percent of the dry turbojet value. 

Based on percentage of jet-off drag, there  are large differences between the jet 
interference of the various exhaust gases for  all configurations and subsonic Mach num- 
be r s .  Depending on the configuration and free-s t ream Mach number, the differences 
between the jet interference of the four exhaust gases  generally ranged from 10 to 20 per-  
cent of the jet-off drag at the low jet pressure  ratios,  and up to 35 percent of the jet-off 
drag when compared at  a jet exit static pressure  ratio of 3. At a Mach number of 1.20, 
the increments between the drags for  the various exhaust gases  a r e  smal l  when based on 
the percentage of jet-off drag except for  the sonic exit at  the higher jet pressure  rat ios  
(figs. lO(e) and l l(e)) .  
is limited to a small  region at the r e a r  of the boattail for  the lower jet p ressure  rat ios  
(figs. 14(i) and (j) and 15(i) and (j)). 
of 2,  the je t  exit static pressure  rat ios  were not high enough for  the je t  to expand very 
much. 
urations (figs. 12  and 13) are s imilar  to the differences for  the configurations with the 
sonic exits at the lower jet p ressure  rat ios  (figs. 10 and 11). 

This resul ts  because the effect of the jet on the boattail p ressures  

For the configurations with a jet exit Mach number 

The differences between the drags  for  the various exhaust gases  for these config- 

Correlation of Exhaust Plume Blockage 

As explained before, the jet exhaust influences the afterbody pressures  by presenting 
a body which the external flow must negotiate and by entraining flcid from the vicinity of 
the afterbody. The plume blockage interference would obviously be a function of the shape 
of the jet exhaust boundary and, as discussed in reference 13, the most important factor 
determining the shape of the jet boundary is its initial inclination angle. It was verified in 
reference 14 that matching this angle for  several  exhaust gases  in a quiescent atmosphere 
matched the initial jet plume shapes as well. Therefore, the initial inclination angle of the 
je t  exhaust 6 
blockage on afterbody drag. (See sketch (d).) To calculate G j ,  i t  was assumed that 

12 
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Sketch (d) Plume angle calculation. 

was the pressure  to which the j e t  exhaust was expanding upon leaving the nozzle. 

The nozzle divergence half-angle was essen- 

Paf t , te 
Then, using the measured values of paftYte, pe, and the jet total pressure,  6j was cal- 
culated from the Prandtl- Meyer relations. 
tially ze ro  for  all configurations. 

Sketch (e) presents an example of the afterbody pressure  drag for  each of the exhaust 
gases  as a function of the jet total p ressure  ratio, the jet exit static pressure  ratio, and 
the initial inclination angle of the jet exhaust plume. As discussed previously, differences 
exist between the afterbody drag coefficients for  the various exhaust gases. As a function 
of jet total p ressure  ratio, the differences increase as pressure  ratio is increased. When 
comparing the drag coefficients as a function of the jet exit static pressure  ratio, the dif- 
ferences increase at  a lower rate.  A comparison of the drag coefficients as a function of 

. 1 5 r  I 

Jet 3 5 7 9 I I  
o f f  Pt, j / P a  

Je f  I .5 2.5 3.! 3 4.5 5.5 

Pe/Pco 
o f f  

y j  ~ j l  ++ Tt,j 7 K 
0 1.40 287 300 
0 1.30 390 646 
0 1.28 384 8 I O  
A 1.26 3 76 I O  I 3  

Jet 5 15 25 35 
o f f  

’j 

Sketch (e) Comparison of jet  simulation parameters .  
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the  initial inclination angle of the jet exhaust 
afterbody drags for  the four exhaust gases. However, at the high p res su re  rat ios  and 
hence high plume angles, the discrepancy is reduced even more  than for  the comparison 
using exit static pressure  ratio. Similar correlations were  obtained in  reference 15 
between room temperature air and hot exhaust gases  by computing an effective jet pres-  
s u r e  ratio based on the ratio of specific heats for  each gas. Since the initial plume angle 
probably gives a good representation of the initial shape of the jet  plume in a moving 
s t r eam as it does in a quiescent atmosphere (ref. 14), the discrepancies between the jet 
interference of the four jet exhaust gases  at  a constant value of 6 .  J 
to entrainment. 
seem to be relatively consistent with 

6j a lso shows differences between the 

should be mainly due 
For each free-stream Mach number and configuration, these differences 

6j. 
The maximum values of exit p ressure  ratio o r  initial plume angle for  the configura- 

tions with Mach 2 jet exits were not large enough to determine i f  the trends just mentioned 
were valid for these configurations (figs. 12 and 13). However, for  these configurations, 
6 -  seems to be a t  l eas t  as good a parameter  as jet p re s su re  ratio with which to compare 1 
the jet interference of the various exhaust gases. Therefore,  for  underexpanded jets,  the 
data seem to indicate that the initial inclination angle of the jet exhaust plume is a more  
relevant parameter fo r  comparing the jet interference due to plume blockage than either 
ptyj/p, o r  pe/p,,. T h e u s e  of 6 j  instead of p e/ p, 01" Pt,j/Pw would be more  help- 
ful when high jet exhaust plume angles a r e  expected. 

In reference 9, the f i r s t  t e rm of a se r i e s  expansion of the ratio of p pe gives d 

where the subscript 1 

Pj = (Me2 - 1)1'2, and Av is the difference in the Prandtl-Meyer turning angles for 
the je t  exhaust in expanding from Me to MI. For small  values of Av, the following 
je t  boundary simulation parameters ,  which would provide the same flow turning angle 
for the model and full-scale conditions, were suggested: 

denotes the conditions to which the je t  i s  expanding, 

(Jet boundary in a quiescent medium) 

(Jet boundary in a moving s t ream) 
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These parameters  are compared with 6j in figure 18 for the nozzle with a boattail 
angle of 20' and an exit Mach number of 2. All three parameters  seemed to give about 
equal resul ts  in comparing the drag for  the various exhaust gases. However, due to the 
low plume angles obtained for  the nozzles with supersonic exits, the resul ts  were incon- 
clusive. Since these parameters  are approximations for  the initial plume angle, and since 
they can become very large o r  small  for values of M, and Me near 1, 6j would be 
the best of the three with which to compare the jet interference of various gases due to 
plume blockage. 

Reference 14 indicates from quiescent atmosphere studies that excellent plume 
boundary simulation over a wider range of conditions and to much la rger  axial distances 
can be made by duplicating both 6j and y,/? instead of just  6j .  It a lso indicates 
that a small  additional improvement can be made by duplicating the nozzle divergence 
half-angle. This may be important for very large pressure  rat ios  or  when surfaces down- 
s t ream of the nozzle exit present such problems as pressurization or  heating of adjacent 
surfaces.  However, reference 13 indicates that the differences between boundaries fo r  je ts  
having the same jet exit Mach number and nozzle divergence angle a r e  negligibly small  
when 6j is duplicated and the difference in ratio of specific heats is not much greater  
than 0.1. Therefore for  most jet airplane configurations and jet pressure  rat ios ,  the 
duplication of Me, the nozzle divergence angle, and G j  should give adequate correlation 
of jet  interference on afterbody drag due to plume blockage for  various exhaust gases.  

Correlation of Entrainment 

At supersonic Mach numbers,  exhaust plume blockage usually accounts for  nearly all 
the jet interference on nozzle boattails. However, at  transonic Mach numbers, o r  when 
there  are bases  o r  large separated regions in the vicinity of the nozzle exit, entrainment of 
fluid from the region can significantly contribute to jet interference. In these situations, 
in  addition to the proper simulation of the shape of the airplane's exhaust plume, correc-  
tions to wind-tunnel values for  differences between the entrainment of the rea l  airplane 
exhaust and the simulation gases  used in the wind tunnel become important. 

The amount of fluid entrained from the vicinity of the afterbody by the jet exhaust 
depends on, among other things, the momentums of the jet exhaust and local afterbody flow 
and the velocities, energies, and mixing character is t ics  of the two flows. The momentum 
of the entraining fluid is generally considered a major  factor determining the quantity of 
fluid entrained. In reference 16 the following equation is given for  the mass of fluid 
entrained by a jet i n  a quiescent atmosphere: 

(3) 
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In this equation, merit is the mass  of the surrounding fluid entrained, Hj,l is the 
momentum flux of the jet exhaust, p, is the density of the surrounding fluid, w is the 
axial distance downstream o'f the nozzle exit, and C is a constant. Thus the equation 
predicts that the entrainment var ies  as the square root of the exhaust momentum. 

In addition to the momentum ratio, the following simulation parameters  suggested in 
reference 9 were considered the ones most likely to correlate  the jet interference due 
entrainment : 

to 

(Mass flow) 

(Kinetic energy per  unit mass)  

(Internal energy per  unit mass)  

The maximum cross-sectional area of the model Amax was substituted for A, in these 
equations. The ratio 

was also used to correlate  entrainment. Since the jet exhaust interacts with the external 
flow downstream of the nozzle exit, the correlating parameters  were  computed for  the 
conditions just behind the nozzle. For these calculations, the local jet static pressure  
was assumed to be equal to the afterbody trailing-edge pressure.  Entrainment, in  the 
sense  used in this paper, refers to the effects of the mixing and aspiration of fluid by the 
jet exhaust in the region near  the nozzle exit, as contrasted to the f a r  downstream mixing 
region of the exhaust. 

The entrainment correlation parameters  are compared in sketches (f) and (g). 
Afterbody drag coefficient fo r  the 20' boattail is cross-plotted versus  the parameters  for  
a constant initial plume angle of 0' (sketch (f)) and 5 O  (sketch (g)). Therefore, any differ- 
ences in drag should be mainly due to differences in entrainment. For reference,  since 
entrainment tends to lower the afterbody pressures ,  the grea te r  the entrainment, the higher 
the drag. For Entrainment is not a unique function of any of the parameters  presented. 
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Sketch (f) Comparison of entrainment correlation parameters  a t  6 j  = Oo. 

example, the data for  the afterbody with the Mach 2 exit do not fall on the same curve as 
the data for  the afterbody with the Mach 1 exit when compared as a function of jet momen- 
tum. If entrainment were only a function of jet exhaust momentum, the data for  each noz- 
z le  would l ie on a single continuous curve. 

For  air, the jet exhaust Reynolds numbers based on the exit diameter of the nozzles 
5 5 5 5 ranged from 3.71 x 10 to 20.9 x 10 for the sonic nozzle, and from 5.60 x 10 to 25.7 x 10 

for  the Mach 2 nozzle. Reference 16 reports  that for  values grea te r  than 3 X lo4,  the 
entrainment coefficient C in  equation (3) is independent of nozzle Reynolds number. 
Then jet exhaust Reynolds number should not account for  the fact that the entrainment of 
the two exits do not correlate.  Therefore, sketches (f) and (g) indicate that entrainment is 
dependent on the jet exhaust Mach number, an observation also suggested in  reference 17. 

Although none of the parameters  definitely correlated entrainment of the two nozzle 
exits, fo r  each exit and for  each plume angle, the effects of entrainment of the various 
gases  are close to a straight l ine function of the parameters  RjTj ,z/RwTw, internal energy 
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Sketch (g) Comparison of entrainment correlation parameters  a t  6j = 5'. 

p e r  unit mass ,  and the local kinetic energy pe r  unit mass ,  that is, Vj ,z2/Vw2. Refer- 
ence 18 also indicates the dependence of jet interference on the ratio R.T /R,T,. 
Cross  plots of incremental afterbody drag coefficient versus  the ratio RjTjYl/R,T, and 
the kinetic energy per  unit m a s s  parameters  at constant values of 6. 

J 
f igures 19 and 20. 
a jet total p ressure  of 0.8 of the value required for  sonic throat conditions. 

J j ,l  

are presented in  
For subsonic jet  exit conditions, the parameters  are cross-plotted at 

The relatively straight-line variation of these parameters  uiith drag  suggests that 
they may be used to adjust fo r  entrainment of various gases.  Using either parameter ,  two 
points on the curve would have to be experimentally established at the proper plume angle 
for a particular configuration. 
parameter  for  the rea l  j e t  exhaust gas  may give an estimate to the r e a l  airplane drag. 
It should be emphasized though, since entrainment is dependent on the configuration and 
external flow conditions, that this is not a prediction method but only an interpolation 
method for adjusting the wind-tunnel values a t  the external flow conditions and for  the 
model geometry tested. 

Then a straight-line interpolation to the value of the 
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Application of Jet Simulation Parameters  

The  preceding discussion has established the importance of simulating the jet plume 
blockage and entrainment effects. It has  been demonstrated that the jet plume blockage 
effects can be duplicated for  various exhaust gases  by matching the initial inclination angle 
of the je t  exhaust plume. Corrections to wind-tunnel values for entrainment, however, 
must be evaluated from resul ts  for  at  least  two exhaust simulation gases. Sketch (h) 
shows an example of the procedure for adjusting the experimental value of j e t  interference 
to full-scale conditions. The data presented are for  the following conditions: M, = 0.95; 
/3 = 20'; sonic exit. First, experimentally determine the variation of afterbody drag with 
je t  p ressure  ratio for  a t  least two jet  exhaust gases.  Then, correct  for  plume shape dif- 
ferences by relating the drag  to the initial plume angle of the jet exhaust, and obtain a 
value of drag at the operating plume angle of the aircraft .  
interference for  any discrepancies in entrainment could then be made by interpolating with 
the kinetic energy parameter ,  internal energy parameter ,  o r  the RT ratio as illustrated 
in sketch (h). 

Final adjustments to the jet 
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Sketch (h) Application of j e t  simulation parameters.  

19 



CONCLUDING REMARKS 

Based on the jet exhaust gases  tested and other variables of the investigation, the 
following effects of the jet  exhaust physical gas properties on afterbody drag  are indicated. 

Substantial differences were obtained between the afterbody drags for  the various 
jet exhaust gases. Air, when used as the jet exhaust, consistently gave the least favorable 
jet interference and therefore the highest drag. The exhaust gases  having rat ios  of spe- 
cific heats, gas  constants, and total temperatures of 1.30, 390 J/kg-K, and 646 K; 1.28, 
384 J/kg-K, and 810 K; and 1.26, 376 J/kg-K, and 1013 K generally resulted in increas- 
ingly more favorable je t  interference and l e s s  drag. 

greatest  for  the combination of high boattail angles, 20°, and high subsonic o r  transonic 
Mach numbers. For the combination of the lower boattail angles, loo, and lower Mach 
numbers, the differences were much less. At a free-s t ream Mach number of 1.20, the 
differences in  drag were small  until large values of jet pressure  ratio were obtained. 
Based on percentage of jet-off drag, there  were large increments between the afterbody 
drags for  the various jet exhaust gases  at  all subsonic Mach numbers. Depending on the 
configuration and free-s t ream Mach number, the differences generally ranged from 10 to 
20 percent of the jet-off drag at the low jet p ressure  ratios,  and up to 35 percent of the 
jet-off drag at the jet exit static pressure  ratio of 3. For operating conditions typical of 
high nozzle drag (high boattail angles and transonic speeds and corresponding pressure  
ratios),  the current data indicate that the use  of air to simulate a dry turbojet exhaust can 
resul t  in an overprediction of afterbody drag as high as 17 percent of the dry turbojet 
value. 

The differences between the afterbody drags fo r  the various exhaust gases  were 

The differences in jet interference between the various exhaust gases  are attributed 
to different plume shapes and entrainment properties of the gases. Corrections for  the 
plume shape differences can be made by relating the drag to the computed initial incli- 
nation angle of the jet plume. Although the entrainment differences are difficult to predict, 
they seem to be a relatively straight-line function of the product of the jet exhaust gas  
constant and local temperature,  of the local jet exhaust kinetic energy pe r  unit mass ,  and 
also of the internal energy pe r  unit mass.  

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, Va. 23665 
June 16, 1975 
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APPENDIX A 

DATA REDUCTION 

This appendix describes the procedures used to  reduce the measured quantities into 
co ef f i  ci ent form . 

Jet Exhaust Conditions 

The stagnation conditions of the jet were obtained from the rake located just behind 
the flow smoothing plates. (See fig. 2.) Incremental areas were assigned to  the probes, 
and the total p ressure  and temperature  were obtained from the equations 

10 
.i- 

and 

3 
P 

where 2 F i =  1 and Bi = 1. 
i= 1 i= 1 

The static pressure  at the nozzle exit was assumed to be the average of measure- 
ments made with the two static pressure  taps  nearest  the nozzle exit. Their exact loca- 
tions are given in  table 2. The afterbody with the boundary-layer rakes  had no static 
orifices, so  for  conditions at which the nozzle was assumed choked, i.e., when 
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pe was calculated with the equation 

- 'j 
y.- 1 

J 

External Conditions 

The afterbody drag coefficient was computed by assigning incremental areas to each 
p res su re  on the top row (at $I = 0') and by using the equation 

n 
-1 

'D,aft = - C Cp,aft,iAaft,i 
i= 1 

where n is the number of orifices in the top row and 

n 
P 

It was assumed that the top row of orifices would be the row most nearly f ree  of s t rut  
interference. 

The boundary-layer profiles were computed by substituting the pressure  sensed by 
the rakes into either the equation 

i f  
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or  the equation 

if  

Ya- 1 --.( Ps ,r ) 
Pt,r,i y, + 1 

The integer 
The second equation for  
to 0.0001 of the computed value of Mbl,i. The velocity profiles were computed by 
using the free-  s t ream stagnation temperature as the stagnation temperature in the 
boundary layer. To check the validity of this assumption, boundary-layer temperatures 
were measured with another s e t  of rakes.  The rat io  of the actual velocity in the bound- 
a r y  layer to the velocity computed by assuming the free-s t ream temperature would then be 

i indicates the particular rake total p ressure  measurement in question. 
was i terated until the residual was less than or equal Mbl,i 

1/2 
Vat tual - - Mbl,iabl,i ,actual 

VCOmPuted Mbl,i%l,i ,computed 
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APPENDIX B 

FACTORS INFLUENCING J E T  INTERFERENCE 

As the jet exhaust leaves the nozzle exit, i t  influences the afterbody pressures  by 
presenting a body which the external flow must negotiate and by entraining fluid from the 
vicinity of the afterbody. The magnitudes of these two effects are influenced by the free- 
s t ream conditions, j e t  exhaust profiles, and the condition of the flow on the afterbodies. 
There was a small  variation of these parameters  between the tes t s  of each exhaust gas. 
The influence of these variations on drag is evaluated in this appendix. 
accurate assessment  of the differences in drag due solely to differences in the je t  exhaust 
physical gas parameters  can be made. 

Therefore,  an  

Free- Stream Conditions 

Since the Langley 16-foot transonic tunnel is an atmospheric wind tunnel, the free- 

The variation in Reynolds number 
s t ream conditions varied slightly during the investigation. Figure 21 shows the band of the 
free- s t ream parameters  encountered during the test. 
a t  a particular Mach number is primarily due to the variation in f ree-s t ream total temper- 
ature. The break in the bands between Mach numbers 0.95 and 1.20 indicates that no data 
were taken in this Mach number range. The bandwidth of the free-s t ream parameters  is 
small  enough so  that i t  does not substantially affect the je t  interference. 

J e t  Exhaust Prof i les  

The shape of the je t  exit profile is an important parameter  affecting the influence of 
the je t  exhaust on the external flow. Therefore,  even though care  was taken in the design of 
the model to insure flat  and uniform profiles for  each exhaust gas ,  the actual exit profiles 
were determined on a static tes t  stand with rakes. This was especially important for  the 
hydrogen peroxide nozzles because flat exit profiles are difficult to obtain without careful 
design of these gas generators. (See ref. 19.) The pressure  distributions on the nozzle 
walls were also measured and are shown in figure 22 as a function of j e t  p ressure  ratio. 

Figure 23 presents  exit profiles of the total p ressure ,  static pressure ,  and total tem- 
perature ra t ios  for the = 1.0 and Me = 2.0 nozzles. The nozzle wall exit static 
pressures  were obtained with the static pressure  rake removed to avoid interference of the 
rake probes with the wall measurements. The exit profiles of the basic measured quan- 
tities were relatively flat  and uniform for  all the gases. 

Exit velocity profiles computed from the basic measurements are presented in fig- 
u re  24. These and the internal pressure  distributions (fig. 22) indicate that the je t  total 
p ressure  rat io  for the supersonic nozzles must generally be greater  than 0.6 of i t s  design 
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value to insure a nominal exit Mach number of 2. 
profiles for  the various gases  are also relatively f la t  and uniform. 
nonuniformity of the exit profiles was not a major factor in the differences between the je t  
interference of the various exhaust gases. 

Figure 24 shows that the exit velocity 
This indicates that 

Afterbody Flow Parameters  

Entrainment of fluid from the region of the afterbody and the effect of the j e t  plume 
boundary on the afterbody pressures  depend on the nature of the afterbody flow. Since 
afterbody skin temperature could affect the boundary-layer profiles and boattail p ressures ,  
each hydrogen peroxide nozzle was insulated to keep the external skin temperature distri- 
bution independent of the exhaust gas  temperature. However, some variations between the 
afterbody skin temperature distributions for the four je t  exhaust gases  were obtained. 

Figure 25 shows the jet-off pressure  distributions, skin temperature distributions, 
and boundary-layer profiles for the afterbody with a boattail angle of 20'. The boundary- 
layer measurements were made on a special boundary-layer afterbody which duplicated the 
20' afterbody with a sonic exit. Cold skin temperatures were obtained by making a tunnel 
run in which the je t  was not operated. 
immediately after the je t  was turned off. The skin temperatures immediately after the je t  
was turned off were essentially the same as the hottest skin temperatures when the jet was 
operating. (See fig. 26.) 

Data for the hot skin temperatures were taken 

The Mach numbers in the boundary layer were computed by  using the static pres-  
su res  measured a t  the tips of the boundary-layer rakes. (See fig. 7.) A comparison of 
the coefficients of the pressures  measured a t  the tips of the rakes  with those measured on 
the model surface in the plane of the rake with the rake removed (fig. 27) shows that the 
static pressures  used to compute the boundary-layer Mach numbers were in e r ror .  At the 
higher Mach numbers,  a shock originating a t  the afterbody location where the boundary 
layer  separates  probably interferes  with the rear rake static probe pressures.  So these 
data were not faired. 
of the boundary-layer shapes and the extent of the separated region on the afterbody. 

The profiles do serve the purpose, however, of giving an indication 

The velocities i n  the boundary layer were computed by assuming that the total tem- 
perature in  the boundary layer was the same as the total temperature of the free stream. 
The square roots  of the rat io  of the total temperature in the boundary layer  to that of the 
free s t r eam show that this assumption gave very little e r r o r  in  that portion of the boundary 
layer  which was not separated. The boundary-layer temperature measurements at a Mach 
number of 1.2 were unreliable due to a thermocouple malfunction and are not presented. 

Figure 25 shows that the afterbody skin temperatures had no effect on the forward 
boundary-layer profiles. The rear profiles indicate that there  is a slight tendency for  the 
boundary layer  at the trailing edge to separate earlier (see the data for M, = 0.90, 
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fig. 25 (f)) fo r  the hotter skin temperatures. Trailing-edge boundary-layer profiles imme- 
diately before and after a je t  p ressure  ratio sweep (cool and hot skin temperatures) do not 
always support this trend, It is supported at a free-s t ream Mach number of 1.20, but at 
M, = 0.90 the opposite effect is seen (fig. 28). At other subsonic Mach numbers there 
was no difference between the profiles before and after a je t  p ressure  rat io  sweep. 

The boundary-layer profiles (fig. 25) show that, for  the tes t  Mach numbers, the 
greatest  amount of separated flow on the afterbody with 2/dm, = 1.0 occurs at a free- 
s t r eam Mach number of 0.95 and a smaller  amount at Mach numbers of 1.20 and 0.90. At 
Mach numbers of 0.80 and 0.60 there appears to be no separation. 

The data for  the afterbody pressure distributions presented in figure 25 were taken 
just  before and after each je t  pressure ratio sweep to assess any effect of afterbody skin 
heating. At first, a comparison of the minimum values of the pressure coefficients in 
figure 25 for the air model with those for the hydrogen peroxide model seems to indicate 
that colder skin temperatures result  in lower afterbody pressures.  However, the pressure  
distributions for the hydrogen peroxide model seem to be consistent regardless  of skin 
temperature,  and some of those temperatures are at the same level as the temperatures 
for  the air model. A check of the coordinates for the two afterbodies revealed a difference 
in model radius of up to 0.025 cm. Potential flow theory (ref. 12) only accounts for about 
one third of the pressure coefficient difference between the two models, but it does sub- 
stantiate the variations obtained in the pressure coefficient distributions. 

Summary of Factors  Influencing Jet Interference 

During the investigation, the width of the band of the various free-s t ream parameters  
was small. Also, the jet exit profiles were shown to be relatively flat and uniform for all 
the je t  exhaust gases,  and the flow field in the vicinity of the afterbody was negligibly 
affected by the model skin temperatures. Hence, any difference in je t  interference between 
the four exhaust gases  should be mainly due to the differences in the properties of the 
exhaust gases  themselves. 
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TABLE 1.- EXTERNAL INSTRUMENTATION LOCATIONS 

(a) Static pressure orifices 

x/dmax for boattails 

l/dmax = 1.0 

-0.833 
-.500 
-.167 
0 

.125 

.zoo 

.250 

.300 
,417 
.500 
.567 
.633 
,700 
.767 
.833 
.883 
.917 
,950 

- .500 
0 

.125 

.zoo 
,250 
,300 
,417 
,567 
.633 
. I 6 7  
,833 
.917  
,950 

- 
l/dmax = 1.5 

- 0 . 8 3 3  
- .500 
-.167 
0 
.167 
.zoo 
.267 
.417  
,583 
.750 
.917  

1.000 
1.067 
1.133 
1.200 
1.267 
1.333 
1.383 
1.417 

-.500 
0 

.167 
,220 
,267 
,417 
,750 

1.607 
1.267 
1 .333  
1.417 

1 8 0  ~ 

__ 
x/dmax for boattails 

l/dmax = 1.0 

-0 .500 
0 

.zoo 

.250 

.300 

.417 
,567 
,633 
,767 
,833 
,917 
.950 

- .a33  
- ,500 
-.167 
0 

,125 
,200 
,250 
,300 
,417 
.567 
.633 
,767 
,833 
,917 
,950 

1/dmax = 1.5 

-0.500 
0 

.167 
,220 
.267 
.147 
.750 

1.067 
1.267 
1.417 

-.833 
- ,500 
- .167  
0 

.167 
,220 
.267 
,417 
,750 

1.000 
1.133 
1.267 
1.383 
1.417 

is measured clockwise when model i s  viewed from the r ea r .  0’ i s  at the 
top of the model. 

(b) Surface thermocouples: @ = 0’ and 180’ 

“Idmaw for b a t t a i l s  I 
L/dmax = 1.0 

-0 .833 
0 

.500 
3 3 3  
,933 

L/dmaX = 1.5 

-0.833 
0 

.750 
1.200 
1.417 
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TABLE 2.- INTERNAL INSTRUMENTATION LOCATIONS 

(a) Static pressure  orifices; boattails with Z/dmz = 1.0 

I - 5  

Sonic 
nozzle 

-1.667 
-.333 
0 

.333 
a 1.267 

a 1.267 

z/d th 

I Supersonic nozzles 

y = 1.4 

-2.164 
-.433 
0 

.433 
1.299 
2.164 

3.030 
a4.805 
a4.805 

y = 1.283 

-2.230 

-.446 
0 

.446 
1.784 
3.123 

4.015 
a 5.498 
a 5.498 

a For configurations with Z/d,, = 1.5, substitute the following 
values: 

Supersonic nozzles 

y = 1,283 

5.186 

(b) Surface thermocouples; @ = 15'; boattails with Z/d,, = 1.0 

_ _  

- 

Sonic 
nozzle 

- 

-1.667 
0 
1.267 

~~ 

Z/dth 

Supersonic nozzles 

y = 1.4 

-2.164 

0 
2.164 

b4.805 

y = 1.283 

-2.230 
0 

3.123 
5.365 

For configuration ..ith 2/dm, = 1.5, subs t iAe  the following values: 

Supersonic nozzles 

y = 1.4 1 y = 1.283 

i L 1.033 I 4.528 1 4.740 
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Sta. 0 Sta. 15.24 

F 128.37 rad. 

Sta. 144.78 
,--Flexible seal Sta. 67.31 

---- 
\ 

4 

Model and 
tunnel 

I-- 

5 percent thickness ratio parallel to  
model center l ine. 50.80 chord 

55.88 

I 

) 
\ V L 

2.54 rad. 

(a) Air model. 

Figure 2.- General arrangement of model. (All linear dimensions are in centimeters unless otherwise noted.) 



Sta. 0 Sto 15.24 

r 128.37 rod. 

Decomposition Total temperature and sta. 144.78 
chamber pressure rake rotated 
Silver screen -90" (looking upstream) 

for clarity 7 catalyst bed 

Thin nichrome stri 5 percent thickness rotio porallel to 
model center llne 5 0 8 0  chord 

- 5.00 -- 

'2.54 rod. 

(b) Hydrogen peroxide model. 

Figure 2 . -  Concluded. 
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Model station 127.0 

' I  

i 
To ta l  t e m p e r a t u r e  p robe  L To ta l  p r e s s u r e  p robe  

(a) Air model (top view). 

Model station 127.0 

To ta l  t e m p e r a t u r e  p robe  ' Tota l  p r e s s u r e  p robe  

(b) Hydrogen peroxide model (top view). 

Figure 3.-  Details of internal flow rakes. (All l inear dimensions 
centimeters unless otherwise noted.) 

are in 
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Sta. 144.78 
I 

Me 

SONIC 
SONIC 

2 
2 
2 
2 

1 -tx l.Odmax -: e 

dth 

7.62 

7.62 

5.87 
5.70 
5.87 
5.70 

+ 
c 

Lonliguralion 

1 

2 
3a 
3b 
4a 
4b 

I 

Internal contour 1 

Design parameters 

External 
contour 

1 
2 

1 

1 
2 

2 

internal 
:ontour 

1 

1 

2alu -1.41 
2blu = 1.283 
2alu -1.4) 
2 b l 7  1.283 

b 

zoo 
1 oo 
zoo 
2oo 

loo 
IO0 

Sla. 144.78 

Sta. e 
-- 1.5dmax 

I -  External contour 2 

T 
db * 7.77 

Sta. e 

Internal contour 2 
lone lor y - 1.4, and one for Y = 1.2831 

Nozzle aiy - 1.41 

2 

0 

0.455 
0.566 

1.034 

1.544 

2.037 

2.550 
3.071 
3.561 
4.087 
4.567 
5.052 

5.591 
6.1W 

6.563 
7.160 

r 

2.934 
2.9 57 
2.964 

3. Mx) 

3.043 
3.089 

3.139 
3.193 
3.244 
3.299 
3.348 
3.393 

3.442 

3.485 
3.520 
3.563 

Coordinates lor supersonic nozzles 

Nozzle biy = 1.283) 11 Nozzle aly = 1.41 

2 

0 

0.37 
0.493 

0.998 
1.516 

2.009 

2.588 
3.033 

3.574 
4.054 
4.580 
5.103 

5.568 
6.144 

6.639 
7.097 

r 

2.847 
2.8% 
2.8% 

2.855 
2.873 

2.901 

2.946 
2.884 
3.035 
3.081 
3.137 

3.193 
3.241 

3.302 

3.3% 
3.396 

~~ 

z 

7.699 

8.148 
8.626 
9.124 
9.652 

10.201 

10.630 
11.229 
11.692 
12.154 

12.865 
13.6M 
14.348 
15.062 

3.602 

3.6M 
3.655 
3.680 
3.706 

3.729 

3.744 

3.762 
3.774 
3.785 
3.797 
3.805 
3.810 
3.810 

Nozzle bly = 1 2831 

2 

7.584 
8.110 
8.677 
9.154 
9.662 

10.193 

10.612 

11.194 
11.646 

12.121 
12.774 
13.627 
1 4 . N  
15.110 
15.839 
16.543 

r 

3.439 
3.485 
3.531 
3.564 
3.599 
3.632 

3.655 

3.686 
3.708 

3.726 

3.752 
3.774 
3.790 
3.802 
3.807 
3.810 

Figure 4.- Geometry and dimensions of various nozzle configurations. (All 
l inear  dimensions a r e  in  centimeters unless otherwise noted.) 
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yModel and tunne l  center line 

- t  
55. a8 cm 

I / '  
Tunnel station 

39.78 meters 
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! I l l 1  
-Model with afterbody 1 

k 
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/ 
-Support strut 

/ 

/ 
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Model station, cm 

Figure 5.- Cross-sectional a r e a  distributions of model and support system. 
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-6 -5 -4 -3 -2 -1 0 1 

-. 8 -. 6 - . 4  -. 2 0 . 2  . 4  . 6  . 8  1.0 

‘Idmax 

Method of characteristics. M, = 1.30 
Free-stream conditions assumed at x/dmax = 0 
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X/?TaX 

Figure 6. - Examples of theoretical p ressure  coefficient distributions. 
/3 = 20’; Z/dmu = 1.0. 
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,076 

' Detail A 
Front view 

Model sta. 144.78 

,051 hole dri l led through 

Note: A l l  rake probes 
wa I I tubes. 

0.152 

,051 hole dri l led through 

J 

Section J -  J itypicall Section K-K 

Forward rakes 

Forward rakesa 

Rake probe locations 

Probe 

1 

2 

3 

4 

5 

6 

7 

8 

9 (Static 
probe1 

~ 

Y 

0.08 

b.25 

b.51 

b.89 

b1.27 

1.65 

b2.03 

2.54 

b3.30 

Trailing-edge rakes 

Rake probe locations 

Probe 

1 

2 

3 

4 

5 

6 

7 

8 

9 (Static 
Probe) 

Y 

0.25 

b.76 

b1.52 

b2.29 

b3, 05 

b4.06 

5.08 

-. 

bb. 10 

7.11 

@.de9 

19.3 

16.8 

14.0 

11.8 

10.1 

8.3 

7.0 

5.9 

5.1 

Trai ling-edge rpkes 

aForward rakes located at angles of 0 ~ Oo, 135'. 151.5'. and 180'. 
bBoundary-layer temperatures were measured at these values of 

y for the rakes located at angles 0 = 0' and 180'. 

Figure 7. - Boundary-layer rakes. (All linear dimensions a r e  in centimeters unless 
otherwise noted.) Note: $I measured clockwise when the model is viewed from 
the rear; 0' is at the top of the model. 
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P. an C 

P l l l . 3 X  

Figure 8.- Examples of jet interference on the afterbody pressures .  
= 810 K; Rj = 384 J/kg-K; M, = 0.95. 

Tt,j 7. = 1.28; 
J 

C 
P. aft 
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- -  T' I ' 

p=2CP 
[Idmax - 1.0 
Sonic exit 
M_ = 0.60 

. .. 

p - 2 0 "  
l /dmax 1.0 
Sonic exit 
M_ = 0.95 

.05 

0 

-. 05 

pt. jlp- 

Figure 9.- Examples of afterbody drag as a function of jet total pressure ratio fo r  
the various jet exhaust gases. 
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J y i  R.- I '  kg-K Tt.i* 
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0 l . M  3'x) 646 
0 1.28 384 810 
A 1.26 376 1013 

", 
Jet 2 3 4 5 6 7 8 9 10 
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off 
25 30 15 20 

6. 
I 

(a) M, = 0.60. 

Figure 10.- Corrected afterbody drag coefficient a s  a function of pt ./pWy 
,J 

pe/p,, and hj. /3 = 20°; sonic exit. 
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(b) Mm = 0.80. 

Figure 10. - Continued. 
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(e) Moo = 1.20. 

Figure 10. - Concluded. 
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(a) M, = 0.60. 

Figure 11.- Corrected afterbody drag coefficient as a function of pt pm, 
,I 

pe/p,, and 6 /3 = loo; sonic exit. j’ 
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(b) M, = 0.80. 

Figure 11.- Continued. 
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Figure 11. - Continued. 

48 



Y j  R. J I '  kg-K Tt.j' 

0 1.4) 287 m 
0 1.30 390 645 
0 1.28 384 810 

376 1013 A 1.26 

Jet 2 3 4 5 6 7 8 9 10 11 
Off 

Pt. jp 

Jet " 1 . 0  1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 
off 

%/Pm 

. 15 

. 10 

'D.afl '05 

0 

-. 05 

off 

i. 
10 15 

6. I 

M 35 20 25 

(d) M, = 0.95. 

Figure 11. - Continued. 
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(b) M, = 0.80. 

Figure 12.- Continued. 
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